
Windows Disassembler 1.3

User's Manual

Index

Introduction and Specifications.................................... page 2
Operation... page 2

Opening Files... page 2
Displaying Assembly Language Source Code........ page 2
Creating Assembly Language Source Code Files... page 3
Potential Problems In Reassembling..................... page 4

Differences Between Versions 1.2 and 1.3.................... page 4
The HiLevel Utility... page 5

How HiLevel Works... page 5
Bugs... page 6
Liscense, Warranty Disclaimer, and Copyright............. page 6

WDASM Windows Disassembler 1.3 Program Documentation 2
Introduction

Windows Disassembler disassembes Windows executables and dynamic link libraries. It allows you to browse at
the source code of a program without having to write it to a file. Windows Disassembler generates procedure directives,
as well as all of the literal Windows API function call names.

Specifications

Files
Works on Windows 3.x executables and dynamic link libraries only.
Instruction Set
Translates all instructions within the 286 instruction set with the exception of the following multi-tasking instructions: LAR,
LGDT, LIDT, LLDT, LMSW, LSL, LTR, SGDT, SIDT, SLDT, SMSW, STR, VERR, and VERW.
Operating System and Hardware
Requires at least DOS 4.0, Windows 3.1, and a 286 or above IBM compatible computer. Installation of SMARTDRV
(which comes with Windows) is recommended.

Operation

Opening Files
The default file name extension is ".exe" for opening files if no extension is specified. Windows Disassembler

processes one file at a time. If you open a file when another one is already open, the old file will be automatically closed.
When opened, the file's assembly language code appears on the screen, provided that the file has a DOS executable file
header, a new executable file header, and at least one segment. Otherwise, a dialog box will inform you that the file does
not meet a particular specification.

Displaying Assembly Language Source Code
Displaying code in the display window is presented as an alternative to generating a gigantic assembly language

source code file, since some programs are bound to be quite large, and you may merely want to browse at a program's
source code.

The code that initially appears in the window when a file is opened is the first segment within the file. Numbers
are assigned to segments according to their chronological order within the new executable file header. Windows
Disassembler displays one segment at a time within the window. The View | Segment command must be used to go to
another segment. To scroll the text in the window, use the Up Arrow, Down Arrow, Page Up, and Page Down keys, or the
scroll bar. To see the address offsets of each instruction, select View | Address Offsets from the main menu. To jump to a
specific address, select View | Go To from the main menu and enter the address in hexadecimal format.

The View | Far Call Names command toggles between displaying far function call names and the actual
relocation values in far CALL instructions (for example, you will typically see the numbers 0000H:0FFFFH).

All labels have the form of either LxxxxH or DxxxxH, where xxxx is a 4-digit hexadecimal number equal to the
offset of the location being referenced. Labels with an 'L' prefix denote locations within the immediate code segment, and
labels with a 'D' prefix denote locations within a data segment. Labels within a code segment can either be procedure
labels, jump/loop labels, or data labels within the code segment. Assembler directives, while generated for source code
text files, are not shown in the display window.

Strings are detected and translated by Windows Disassembler whenever five or more visible characters occur
within a data segment.

The Set Byte command allows the user to convert a desired range of bytes from byte declarations into
instructions, or vice versa, or to give labels to a specified range of bytes. This command is necessary for programs which
have data declarations in their code segments. Note that all modifications which the user has made to a segment will be
lost when exiting that segment. The user can save that segment using the Save Current Segment Only option as a text
file first before quitting to save the changes. However, when the user leaves the segment, there is no way to restore the
byte settings except by specifying them over again. Selecting the Create Separate Files For Each Segment option will
result in the the modifications/settings being erased (lost) before the file is created, hence the user must use

Creating Assembly Language Source Code Files

WDASM Windows Disassembler 1.3 Program Documentation 3

After opening an executable, you can create an assembly language source code file for it using the Save Text As
command. If the source code file name that you specify is the name of an already existing file, then that file will be
automatically overwritten with the new source code file. Three options are available for generating (a) file(s). The first is
to put all of the source code into one file. The name of this file will be the name you specify. The second option is to put
each segment of the source code into separate files. Each segment's file name will be of the form yournameN.ext, where
yourname.ext is the name you specify in the dialog box, and N is an integer corresponding to the segment's number and
which is appended to the base-name of the file (if necessary, this base name will be truncated to perform the appending).
For example, if you specify \work\myprog.asm as the file name, Windows Disassembler will generate files named \work\
myprog1.asm, \work\myprog2.asm, \work\myprog3.asm, etc.. The third option is to generate a file for the current
segment only (which is currently being displayed in the window). In this case Windows Disassembler uses the file name
exactly as specified.

All editing done will be lost if you exit a segment which you have just modified, or if you try writing all of the
segments to a file(s) at one time. However, if you use the Save Current Segment Only option, all modifications will
remain.

The new file will contain tabs. To display the file in the way in which it was intended to be displayed, you should
set your editor's tab stop value to 8 spaces.

Windows Disassembler will create TITLE, .CODE segmentname, .DATA segmentname, .MODEL LARGE, .286,
and EXTRN winAPIfunc:FAR directives. PROC and ENDP directives are also created for all exported and far
procedures. In the case of non-exported functions, these procedure directives will all have the following form:

Functionn PROC FAR PUBLIC
(code)
RETF

Functionn ENDP

where n is the ordinal number (a decimal integer value) of the procedure in the entry table of the program's executable file
header. For exported functions, the name of the function is explicitly written as it is listed in the resident and non-resident
names tables in the program's header. For calls to fixed functions, a comment is written beside the call indicating which
segment the function belongs to. For example,

CALL FAR PTR Procedure0AD0H ; (Located in Segment 5)

Moreover, for far calls to procedures within the program in a different segment, EXTERNDEF's are generated. Near
procedures are written in the following form:

ProcedureXXXX PROC FAR PUBLIC
(code)
RET

ProcedureXXXX ENDP

where XXXX is a four-digit hexidecimal value equal to the offset of the procedure within the segment.
Windows Disassembler generates segment names for segment directives of the form .CODE SEGn, where n is

the segment number. This name is produced in order to distinguish between segments, and can be deleted or changed.
(If the segments are in separate files then the name isn't needed.) If there are exactly 2 segments in a program, Windows
Disassembler treats the program as having a small model, otherwise it assumes the program has a medium memory
model. If the program has a compact or large model, then the MODEL directive must be changed to reflect the actual
memory model. Windows Dissassembler 1.3 translates functions belonging to commdlg.dll and shell.dll. It also
generates information for unknown function calls in the form Module modulename Ordinal n. The user can look up the
names of these function names using an executable-file header utility on the given dynamic link library. (In other words,
one can use the relocation table names and offsets provided by an .exe file header utility to determine the
function/variable names in the source code.)

In addition, the user must figure out the entry point (used by the END directive) using a .exe file header utility as
well. Finally, EXTRN's (or EXTERNDEF's) must be supplied for any far variables used by the program not already
supplied by Windows Disassembler (typically the far variable __winflags is used by Windows programs, for example).

WDASM Windows Disassembler 1.3 Program Documentation 4
As an example, the files hello.exe, hello.c, hello.def, hello.exh, hello1.asm, and hello2.asm are included to

demonstrate disassembly using Windows Disassembler. hello.exe (a "hello world" program) is a compilation of hello.c.
hello.exh is an .exe file-header listing for hello.exe generated by EXEHDR. hello1.asm and hello2.asm were generated
using Windows Disassembler (using the Create Separate Files option) and were edited as follows. The labels L0627H,
L01ACH, and L0360H were made global labels via the :: (double colon) since these are accessed outside of the
procedure in which they exist. (In MASM 5.1 the ::'s wouldn't be necessary.) An EXTRN __winflags directive was added,
and the segment names SEG1 and SEG2 were deleted. The include file was created by copying the file hello2.ASM and
changing the directives into EXTERNDEFs. The EXTERNDEFs function as either PUBLIC or EXTRN specifiers,
depending on whether the corresponding argument of an EXTERNDEF is located in the same file or else in a different
module (like function prototypes in C). One can rebuild hello.exe from hello2.ASM with MASM 6.0 by typing:

ml /c hello2.asm
link /ALIGN:4 hello1 hello2,hello2,, libw slibcew, hello.def;

which will generate hello2.exe. The alignment option prevents any further alignment, since the code has already been
aligned by a C compiler.

Re-assembling medium, compact, and large model programs is more complex than the example given. The
simplest way to disassemble and reassemble a medium/large-model program is to first save the segments in separate
files (or modules). Then, in addition to the steps described above, do the following. Make the data segment accessible to
all modules by copying the contents of the data segment file to a new file and converting it into an include file. This is done
using an editor with a regular expression search function and replacing each occurance of "^D" with an "EXTERNDEF
D" and "DB 00[A-F,0-9][A-F,0-9]H" with ":BYTE" (string declarations might need to be replaced manually) and then
saving the file with an .inc extension. Then include this file (i.e., INCLUDE filebasename.inc) in each module that
accesses the data segment. (If there are two data segments, then there could be conflicting labels.) Finally, assuming one
has the resource files, assemble each module and link. Otherwise, Borland's Resource Workshop can be used for
obtaining the resources, or any reverse resource compiler.

Potential Problems In Reassembling
One problem that usually will occur in reassembling is that of unknown labels due to references to labels that are

located in a different procedure. The :: operator must be used to make such labels global. Another potential problem is a
linking error in which a given module references a global variable that doesn't exist. The problem is usually that the
variable is a string which follows another non-null terminating string in the data segment and the two were thus interpreted
as one string by Windows Disassembler. Simply seperate the strings. Finally, there is a potential problem related to
modifying a program after it has been successfully disassembled and reassembled. The problem is that all address
references are literal numbers. This is not a problem when you assemble in its original form, because the addresses don't
change. But when you insert something new (or change something) in the middle of the code, the addresses of the
instructions after get changed. What are needed before modifying the source code are symbolic addresses instead of
literal numeric addresses. You must figure out which numeric operands are addresses by examining the context in which
they occur, and then substitute the number with an OFFSET name, SEG name, @Code, or @Data directive, as
appropriate. Finally, the error, "A2006 : undefined symbol" will occur when working with code having references to fixed
functions outside of the given segment. This error is solved by supplying EXTRNs and PUBLICs in the appropriate files.

Differences Between Versions 1.2 and 1.3

The recognizable differences in version 1.3 are the generation of PROC directives for near and far procedures as opposed
to only far procedures, the representation of Windows API function names in their proper case, and the fonts option. All
references (including offsets and segments) to exported functions and dynamic link library functions are now explicitly
written, greatly reducing (and in many cases eliminating) the need for using an executable file header utilitiy. In addition,
Windows Disassembler now handles references to fixed functions in addition to moveable ones. Also, the HiLevel utility,
hilevel.exe, has been included with Windows Disassembler which partially converts MASM source code into C source
code.

The HiLevel Utility

WDASM Windows Disassembler 1.3 Program Documentation 5
The HiLevel utility included with Windows Disassembler is a Windows 3.1 utility which attempts to convert

assembly language programs into C programs. It will accept as input basic MASM programs, provided they do not have
macros or certain other directives and high-level syntax keywords. It should accept all source code generated by Windows
Disassembler. HiLevel can construct nested if and while statements, goto statements, and basic assignment statements
for each corresponding block of instructions found in the given MASM source code file. Locals are given symbols of the
form localn and parameters are given the symbol parn, where n is the offset of the variable relative to the BP register.
HiLevel also attempts to construct function calls, although it cannot construct long/double arguments. If HiLevel cannot
convert an instruction or group of instructions to C, it will simply write the instruction(s) in assembly code. If it encounters
code that is not contained withing a procedure declaration, it writes out the code in assembly language within a comment
using the delimiters /* and */.

While HiLevel lacks features needed to generate pure C programs, it nonetheless can contribute something
towards translating assembly language programs into C programs. If there is a syntax error in the source file, HiLevel will
halt and give the line number on which the syntax error was found. Otherwise it displays the message, "Compilation was
successful! Hurrah! Hurrah!" It takes sometimes as much as a minute to process a source code file, and as long as you
see the disk drive light come on at regular intervals (say every 5 seconds) there is no cause for alarm. Otherwise, the
system is probably hung. It is possible that HiLevel could hang up the system because of its limited local heap of 50736
bytes (which is not a major problem in 386 enhanced mode, since pressing Enter will terminate the application.
Otherwise, in standard mode, hitting Ctrl-C instead of Ctrl-Alt-Delete will sometimes terminate the application). What this
means is that for programs containing really huge procedures HiLevel will probably use up the local heap and "fly south"
(hang). HiLevel was tested on the file hello1.asm plus five other larger syntatically correct files it and worked fine. A
general rule-of-thumb is to assemble the source code first before using HiLevel on it, since there is no way that the
program will ever compile if it fails to assemble to begin with.

The while loops constructed by HiLevel are not always quite correct. The problem is that the loop might include
some of the instructions preceding the loop which are part of the test condition of the while loop, but HiLevel doesn't
attempt to detect this.

With further development, it would be possible for this program to also construct do-while, return, break,
continue, and switch statements, as well as to construct complex expressions (such as function calls passed as the
arguments to other function calls, and so on) from MASM source code. However, such development will not be
undertaken by the author at the present.

How HiLevel Works

HiLevel breaks the source code down into tokens and parses it, as a compiler would. Then, for each procedure,
HiLevel constructs a directed flow graph data structure, where each node in the graph contains (points to) a block of code.
A block of code is defined as a series of instructions in the source code where the first instruction in the block follows
either a jump instruction (JMP, JZ, JNZ, JLE, ...) or a label, and the last instruction is either a jump instruction or else is
followed by a labeled instruction. Moreover, all other instructions inside the block are non-jump, non-labeled instructions.
That is, blocks are delimited by jump instructions and labels. (If HiLevel finds code outside of a procedure, it will write out
the code inside a comment, one block at a time. Hence in this case you can see how HiLevel breaks up the code into
blocks.) Each block is a linked list of instructions, and each instruction is stored in a tree, where the root of each tree is
the instruction's mnemonic, the left child is its left operand, and the right child is its right operand. Since each block
contains at most one jump instruction as the last instruction in the block, we say that the block jumps to another block
provided that its last instruction is a jump instruction. Hence, to construct a directed flow graph for a procedure, HiLevel
creates nodes for each block of code. Each block is then made to point to the block to which it jumps (if any) and also to
the the next block after it in the code. HiLevel then test to see whether a given block is the start of an if statement by
checking whether the other block to which it jumps is located somewhere after the original block in the source code and
that the jump instruction involved is a conditional jump preceeded by a test instruction (CMP or TEST). If so, HiLevel
indents and writes out all the code between the block and the block it jumps to, and then unindents and continues. Since
there can be if statements within if statements, a recursive function is required to do this analysis. Detecting while, do-
while, and switch statements is somewhat similar, although a bit more involved. As noted earlier, HiLevel handles only if
and while statements.

Constructing function calls involves checking for a series of PUSHes followed by a CALL. However, this can get
complicated if there are instructions in between the PUSHes of a function call for evaluating an expression before passing
it as an argument. The solution would be to maintain (a) variable(s) which keep track of the logical values of the AX and
DX registers (whether they be a return value from a function or else an arithmetic expression) and check whether the

WDASM Windows Disassembler 1.3 Program Documentation 6
instructions between two PUSHes can be reduced to a single expression and whether the second PUSH following the
instructions pushes that expression/value. Since functions can have functions has arguments, which in turn can also have
functions as arguments, etc., a recursive function would be required here as well. HiLevel, however, only goes so far as
detecting functions with PUSHes that immediately follow one another

Bugs

Known Bugs In Version 1.3

The screen will need refreshing occassionally after scrolling upwards, mainly within data segments, but
sometimes in code segments if you edit the bytes. This bug is minor and will not affect file generation.

The scroll bar doesn't work properly when displaying segments of size 7FFFH or greater. In this case you must
use the Page Up/Page Down and the up arrow/down arrow keys. This problem is due to Windows' scroll bar range limit of
32,726 (7FFFH).

There is a bug associated with references to fixed functions (as opposed to moveable functions). One such case
is where the segment and offset of a function are being referenced. You might, for example, see something like the
following:

PUSH OFFSET ABOUTDLG
PUSH OFFSET ABOUTDLG
PUSH WORD PTR D0AC0H
CALL FAR PTR MakeProcInstance

Obviously this is an error. The first PUSH should actually read, "PUSH SEG ABOUTDLG." This cause of this bug is
unknown.

License / Warranty Disclaimer
You are free to use, copy and distribute Windows Disassembler providing that no fee is charged for use, copying

or distribution, it is not modified in any way, and this documentation file (unmodified) accompanies all copies. This
program is provided as is without any warranty, expressed or implied, including but not limited to fitness for a particular
purpose.

Windows Disassembler may not be used in any unlawful or illegal manner. In particular, please note the copyright
terms of the program you process.

Copyright
Windows Disassembler and this documentation are copyrighted (c) 1992 by Eric Grass. ALL RIGHTS ARE

RESERVED.

Comments, critiques and suggestions regarding Windows Disassembler 1.3 are welcomed and can be forwarded to the
following address.

Eric Grass
1612 Gettysburg Landing
St. Charles, MO 63303

